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A pseudospectral matrix-element method is proposed for the analysis of 2-D nonlinear time-
domain free-surface #ow problems. The Chebyshev expansion technique established by Ku
& Hatziavramidis has been used to discretize the r-transformed governing equations including
nonlinear boundary conditions. Simulations of nonoverturning transient waves in "xed and
base-excited tanks are presented. The results are compared with "rst- and second-order
analytical solutions for sloshing and standing waves, respectively. Excellent agreement is
achieved at low values of wave steepness, with the high accuracy due to the close coupling
between points. As the wave steepness increases, the in#uence of higher-order nonlinear
components becomes signi"cant, and is modelled by the present scheme. The solution is
extremely stable, with the r-transformation exactly "tting the free-surface boundary, unlike
other schemes which have to use free-surface smoothing. ( 1999 Academic Press
1. INTRODUCTION

POTENTIAL FLOW MODELS HAVE PROVED to be extremely important in modelling transi-
ent free-surface #ow problems, including standing waves in "xed tanks, liquid slosh-
ing in base-excited tanks, earthquake-induced transient free-surface #ows, and in the
design of large diameter o!shore structures where loading is in the inertial regime. Al-
though "rst- (linear) and second-order potential #ow analytical solutions have been
derived for simple geometries based on perturbation expansion techniques, free-surface
#ows are often strongly a!ected by higher-order components. For example, the &&ringing''
of large diameter structures in steep waves can cause high transient stresses with sig-
ni"cant contributions from third-and higher-order wave components. In such cases,
low-order solutions of the nonlinear di!raction problem are insu$cient to predict the
load-response behaviour of the o!shore structure. Extension of the perturbation procedure
to higher than second order is very cumbersome, and an alternative numerical modelling
strategy seems desirable. Nonlinear time-domain simulation then is an appropriate ap-
proach.

In the past, much attention has been paid to modelling transient free-surface potential
#ows by means of the boundary-element technique [e.g., Lin et al. (1984), Dold & Peregrine
(1986), Grilli et al. (1989), Cao et al. (1991), Zhao & Faltinsen (1992), and Tulin et al. (1994)].
Other authors have used the "nite-di!erence method [e.g., Telste 1985)], or, more recently,
the "nite-element method [e.g., Wu & Eatock Taylor (1994)]. All of the foregoing ap-
proaches give solutions, but smoothing is often necessary to retain stability of the solution
(Longuet-Higgins & Cokelet 1976). An alternative, and extremely promising, approach for
modelling nonlinear gravity waves has been developed (Fenton & Rienecker 1982; Dom-
mermuth & Yue 1987; Craig & Sulem 1993; Taylor & Vijfvinkel 1998) using series
expansions of the surface elevation and potential, with e$cient FFT-based Fourier
pseudospectral solvers.
0889}9746/99/050607#24 $30.00 ( 1999 Academic Press
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In the present paper, a Chebyshev pseudospectral matrix-element method is proposed for
the solution of Laplace's equation with nonlinear free-surface boundary conditions. This
method leads to accurate, stable solutions without the need for free-surface smoothing. The
pseudospectral matrix-element method is implemented on a mapped Cartesian rectangular
computational grid, with a p-coordinate transformation applied in the vertical direction to
deal with the transient wave elevation. This scheme therefore permits the modelling of steep,
but nonoverturning waves.

Spectral methods have been applied to computational #uid dynamics for many years
(Hussaini & Zang 1987). In the last decade, a pseudospectral matrix-element method
(PSME) was established by Ku & Hatziavramidis (1985) and Ku et al. (1987a, b, 1989).
A similar idea was provided by Cortes & Miller (1994) as the spectral-di!erence method.
The latter requires that separate one-dimensional expansions be performed for each
relevant axis, and the "nal form of the expansion is the result of the superposition of the
one-dimensional results. Cortes & Miller reported that this sort of method can model steep
variations very well.

The present paper describes the application of the pseudospectral matrix-element method
to steep transient waves, and is laid out as follows. A pseudospectral matrix-element
(PSME) based on the Chebyshev expansion technique is proposed in the next section. Then,
the mathematical model for free-surface #ow is established, based on potential #ow theory.
A p-transformation is introduced to map linearly the governing equation and correspond-
ing boundary conditions onto a stretched grid system. Details of the discretized model are
presented, followed by its application to increasingly steep waves in "xed and base-excited
rectangular tanks. The results are found to be in excellent agreement with analytical
solutions at low values of wave steepness, as would be expected. It should be noted that the
p-transformation is unique and so restricts the wave shape to be non-overturning; this
means that the model is unable to simulate breaking or nearly breaking waves. It is,
however, able to simulate nonbreaking waves of similar steepness to the maximum encoun-
tered by o!shore platforms in deep water. With extension to 3-D, the present r-transformed
model could be used to model such extreme waves interacting with large diameter vertical
cylinders.

2. THE PSEUDOSPECTRAL MATRIX-ELEMENT METHOD

The pseudospectral matrix-element (PSME) method developed by Ku & Hatziavramidis
(1985) and Ku et al. (1987a, b, 1989) is adopted here. Consider a smooth function u(x)
de"ned on the domain x3[!1, 1]. Then the Chebyshev expansion of u can be written in
matrix notation as

u"T u; , (1)

where T is the matrix formed by Chebyshev polynomials and u; is a vector of Chebyshev
coe$cients. At each collocation point, we have

u
j
"u(x

j
) and ¹

jk
"¹

k
(x

j
). (2)

The collocation points, x
j
, can be represented as

x
j
"cos A

jn
NB , j"0, 1, 2,2 ,N . (3)

The distribution of selected collocation points is relatively sparse in the central part of the
interval [!1, 1] and concentrated at the two ends. If the function to be expanded has
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a steep gradient in the central part, then more collocation points must be located within the
computational domain.

Orthogonality of the Chebyshev polynomials and the Chebyshev}Gauss}Lobatto (CGL)
quadrature formula are utilized to obtain the coe$cients of the expansion. The matrix
representing the transformation from physical space to Chebyshev transform space is
available in a simple form, based on

uL
k
"

2

NC
k

N
+

j / 0

1

C
j

u(x
j
)cos

nkj

N
, k"0, 1,2 ,N, (4)

where

C
j
, C

k
" G

2, j, k " 0, N,

1, 1 4 j, k 4 N!1.
(5)

In matrix notation, we have

u; " T< u , (6)

where

¹K
kj
"

2

NC
k
C

j

cos
nkj

N
. (7)

This is clearly the inverse of the matrix T introduced in equation (1).
Moreover, derivatives of the function u can also be transformed to Chebyshev spectral

space. The qth derivative expanded in Chebyshev series can be represented in spectral space
in the following form:

d2u
j

dxq
"

N
+
k/0

uL (q)
k
¹

k
(x

j
) . (8)

The coe$cients uL (q)
k

of the derivative expansion can be obtained by a recurrence formula
which is a form of trigonometric identity. This is given by

C
k
uL (q)
k
"uL (q)

k`2
#2(k#1)uL (q~1)

k`1
, (9)

where (in matrix notation)

u; (q)
"G(q)u; . (10)

The matrix G(q) can be obtained from the formula

G(q)
"(G(1))q , (11)

starting from

G(1)
ij
"G

0 if i 5j or i#j even,

2j

C
i

otherwise .
(12)

In practice, the derivatives are more conveniently expanded in physical space rather than
spectral space. The appropriate form of the Chebyshev expansions of the "rst derivatives
can be obtained using equations (8), (10) and (6). Thus, we have

du

dx
"Tu; (1)

"TG(1)u;"TG(1)T< u"GK (1)u , (13)
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where

G< (1)
"TG(1)T< . (14)

Using the recurrence formula, the Chebyshev expansions in physical space of the second
derivative may similarly be derived as

d2u

dx2
"GK (2)u , (15)

where

G< (2)
"TG(2)T< (16)

with

G(2)
"G(1)G(1). (17)

Higher derivatives may be obtained in a similar manner, i.e.,

d(2)u

dx(q)
" G< (q)u , (18)

where

G< (q)
"TG(q)T< . (19)

Equation (18) has several advantages over equation (8). First, G< (q) (q"1, 2,2 , ) is just
a function of the number of collocation points rather than other geometric factors. Hence,
G) (q) only needs to be evaluated once, even if an iterative solver is used. Secondly, the
evaluation of the derivatives in physical space by equation (18) can be computed faster. This
is because derivatives expanded in spectral space using equation (8) require the coe$cients
u( (2)
k

to be determined from equation (4) using FFTs. As indicated by Street et al. (1985),
however, the matrix-multiply approach (in Fortran) can be signi"cantly faster than FFTs
(in assembly language), when the number of collocation points in any given direction does
not exceed approximately 100.

3.1. MATHEMATICAL MODEL OF IRROTATIONAL FREE-SURFACE
WAVES IN A TANK

3.1. GOVERNING EQUATION IN CARTESIAN COORDINATES

A 2-D nonlinear wave problem is considered here, as depicted in Figure 1. g is the
free-surface elevation above still water level, b is the length of the tank and d is the still water
depth. A rectangular Cartesian coordinate system is "rst employed, with origin at the mean
free-surface at the left-hand end of the tank. The #uid in the tank is assumed to be inviscid
and irrotational. Therefore, the governing equation of #uid motion is given by Laplace's
equation,

L2/
Lx2

#

L2/
Ly2

"0, (20)

where / is the velocity potential function. The velocity components normal to the "xed
boundaries are zero by de"nition. Hence, we have

L/

Lx
"0, x"0, b (21)



Figure 1. A sketch of the standing wave problem.
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and

L/

Ly
"0, y"!d . (22)

The dynamic free-surface boundary condition on y"g is

L/

Lt
"!gg!

1

2CA
L/

LxB
2
#A

L/

LyB
2

D . (23)

The kinematic free-surface boundary condition is

Lg
Lt

"

L/
Ly

!

L/
Lx

Lg
Lx

. (24)

Formulation of the problem is completed by speci"cation of an appropriate initial condi-
tion for g.

3.2. USE OF THE p-TRANSFORMATION

A major di$culty in obtaining a numerical solution of the above initial value problem is
that at t'0 the coupled nonlinear free-surface conditions, equations (23) and (24), are
applied on an unknown line g(x, t). In many discretization procedures which have been
adopted to deal with this problem, it is necessary to use smoothing to avoid instabilities
associated with the propagation of errors in the location of the boundary. Here we attempt
to avoid this, by transforming the physical domain onto a rectangular region bounded by
horizontal and vertical sides. The approach is to use the so-called r-transformation, which
was originally proposed for meteorological forecasting by Phillips (1957) and has been
hitherto applied in the context of oceanic and coastal #ows [e.g., Blumberg & Mellor (1980)
and Mellor & Blumberg (1985)] and shallow water hydrodynamics [e.g., Stansby & Lloyd
(1995)]. p(x, t) is a stretching variable introduced in the vertical direction, taking the value
0 at the seabed and 1 at the free surface.

Figure 2 is a sketch illustrating the p-transformation. The mapping function p(x,t) is
de"ned as

p"
y#d

h
, (25)



Figure 2. A sketch of the p-transformation.

612 M. J. CHERN E¹ A¸.
where

h(x, t)"g(x, t)#d . (26)

The derivatives with respect to y and p are related by

L
Ly

"

1

h

L
Lp

and
L2
Ly2

"

1

h2
L2
Lp2

. (27a, b)

We need to transform derivatives of the potential function /(x, y, t) with respect to x and
t into derivatives of '(x, r, t). Using the chain rule, we have

L/

Lt
"

LU

Lt
#

LU

Lp
Lp
Lt

(28a)

and

L/

Lx
"

LU

Lx
#

LU

Lp
Lp
Lx

, (28b)

where

Lp
Lt

"

L
LtA

y#d

h B"!

p
h

Lg
Lt

and
Lp
Lx

" !

p
h

Lg
Lx

. (29a,b)

Therefore, the "rst derivatives of / with respect to x and t can be rewritten as

L/

Lx
"

LU

Lx
!

p
h

Lg
Lx

LU

Lp
(30a)

and

L/
Lt

"

LU
Lt

!

p
h

Lg
Lt

LU
Lp

. (30b)

The second derivative of /(x, t) with respect to x is similarly derived by the chain rule, giving

L2/
Lx2

"

L2U
Lx2

# C2
p
h2A

Lg
LxB

2
!

p
h

L2g
Lx2D
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Lp
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p
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Lg
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2 L2U
Lp2

. (31)
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Hence, by using the r-transformation, we can derive a new governing equation and
boundary conditions speci"ed on a rectangular domain. The governing equation is

L2U
Lx2

#C2
p
h2A

Lg
LxB

2
!

p
h

L2g
Lx2D

LU

Lp
!2

p
h

Lg
Lx

L2U
LpLx

#CA
p
h

Lg
LxB

2
#

1

h2D
L2U
Lp2

"0 . (32)

The dynamic free-surface boundary condition is

LU
Lt

"

p
h

LU
Lp

Lg
Lt

!gg!
1

2CA
LU
Lx

!

p
h

Lg
Lx

LU
LpB

2
#A

1

h

LU
LpB

2

D , (33)

and the kinematic free-surface boundary condition is

Lg
Lt

"

1

hC1#pA
Lg
LxBD

LU

Lp
!

LU

Lx

Lg
Lx

, (34)

where h is the sum of the water elevation g and the still water depth d.

4. PSEUDOSPECTRAL DISCRETIZATION OF FREE-SURFACE WAVE
EQUATIONS

We now use the pseudospectral matrix-element method to solve the initial-boundary value
problem in the transformed domain. Accordingly, the governing equation and correspond-
ing boundary conditions are discretized as follows.

We designate N as the number of collocation points in the x-direction, and M as the
number in the p-direction. The computational domain is de"ned by a further mapping
onto !14X41, !14>41, using X"!1#2x/b, >"!1#2r. The governing
equation for '

ij
(14i4N-1, 14j4M-1) is

N
+
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GK X(2)
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U
nj
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!
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A
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i
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M
+
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U
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j
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h
i
A
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LXB

i

N
+
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M
+
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GK >(1)
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(>

j
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h
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B
2
#

b2

h2
i
D

M
+

m/0

GK >(2)
jm

U
im
"0 . (35)

Here we have to deal with derivatives with respect to X and >. Analogous to G< (1) and
G< (2) in equations (13) and (15) derived for 1-D problems, we use G< X(1), G< Y(1), G) X(2) and
G< Y(2) to identify the corresponding terms in 2-D.

Furthermore, the unsteady free-surface boundary equations are discretized using the
Adams}Bashforth scheme. When evaluating the dynamic free-surface boundary condition,
the pseudospectral method is used to provide an estimate of the right-hand side of equation
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(33) at the nth time level as follows:

f (Un
i0
)"
>

0
# 1

h
i
A
Lgn
Lt B

i

M
+

m / 0

GK >(1)
0m
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im

! ggn
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1
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b

N
+
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+
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GK >(1)
0m
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2

h
i

M
+

m/0

GK >(1)
0m
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imB

2

D . (36)

Equation (33) is then integrated in time using the Adams}Bashforth method to give

Un`1
i0

"Un
i0
#

*t

12
[23f (Un

i0
)!16f (Un~1

i0
)#5f (Un~2

i0
)]#O(*t4). (37)

Note that the "rst-order Euler scheme is used to provide information at the "rst and second
time steps, since the Adams}Bashforth is a multistep method.

The kinematic free-surface boundary condition is treated in a similar way. The right hand
side of equation (34) is discretized at any time level n using the pseudospectral method to
give

f (gn
i
)"C

2

h
i

#

4(>
0
#1)

b2h
i
A
Lgn

LXB
2

i
D

M
+

m / 0

GK >(1)
0m

Un
im

!

4

b2A
Lgn

LXB
i

N
+
n/0

GK X(1)
in

Un
n0

. (38)

Hence, implementing the Adams}Bashforth method, we obtain

gn`1
i

"gn
i
#

*t

12
[23f (gn

i
)!16f (gn~1

i
)#5f (gn~2

i
)]#O(*t4). (39)

The solution proceeds as follows. At each time step, the discretized potential ' on the free
surface is "rst determined from equations (36) and (37). The spatial derivative (Lg//Lx) is
obtained using equation (13) with u replaced by the vector gn. Nodal values of g are updated
using equations (38) and (39). Equation (38) also provides the required temporal derivative
Lg/Lt. Values of ' throughout the domain are then evaluated by equation (35). The main
computational e!ort at each time step is the solution of equation (35), which is a set of linear
algebraic equations for '

ij
. The coe$cient matrix is fully populated, and so the matrix

equation may be solved by a standard technique such as LU factorization or conjugate
gradient methods. Here, we have used the LU factorization method. Unlike other schemes,
the r-transform means that no free-surface smoothing needs to be implemented.

5. NUMERICAL RESULTS

5.1 STANDING WAVE MOTION IN A FIXED RECTANGULAR TANK

We specify the following wave elevation as the initial condition:

g(x, t"0)"acos(2nx/b), (40)

where a is the amplitude of the initial wave pro"le, b is the length of the tank and x is the
horizontal distance from the left-hand wall. This case is convenient for validation purposes,
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because it is simple to obtain the analytical solution when the free-surface condition is
linearized. Furthermore, as shown by Wu & Eatock Taylor (1994), expansion of the
governing equations by means of the Stokes perturbation procedure also permits one to
obtain an analytical solution valid up to second order in wave steepness (de"ned as a/d
where d is the still water depth). We will use this solution to make comparisons with results
from the fully nonlinear formulation obtained using the PSME technique. The linear
solution for the wave elevation, obtained by separation of variables, is

g(x, t)"a cos(u
2
t) cos(k

2
x), (41)

and the second-order wave elevation at the centre of the tank, obtained from the perturba-
tion expansions, is

g
2A

b

2
, tB"

1

8gC2(u
2
a)2cos 2u

2
t#

a2

u2
2

(k2
2
g2#u4

2
)!

a2

u2
2

(k2
2
g2#3u4

2
)cosu

4
tD . (42)

In equations (41) and (42) the wave number is k
m
"mn/b for m"2, 4 and

u
m
"[k

m
gtanh(k

m
d )]1@2 . (43)

The results that follow are for a tank having aspect ratio d/b"2. A stretched grid system is
established according to the p-transformation, using equation (25). The physical distribu-
tion of the grid points is depicted in Figure 3 (41]21 points). Obviously, the stretched grid
system exactly matches the time-dependent free-surface wave pro"le due to the r-trans-
formation. To demonstrate that the solution is grid independent, simulations have been
performed using di!erent numbers of grid nodes. Time histories of the wave elevation at the
centre of the tank, for a steepness a/d"0)05, are shown in Figure 4 for 21]11, 41]21 and
61]21 grid points (in the x- and p-directions, respectively). The "gure indicates that 21]11
grid points are su$cient to resolve this nonlinear wave problem. Corresponding results

using di!erent nondimensional time steps, *t*"*tJ(g/d)"0)005, 0)01, 0)02, are com-
pared in Figure 5. Note that the acceleration due to gravity is selected to be g"9)8 m/s2. It
may be observed that the results converge, provided the nondimensional time step is no
larger than 0)01; hence, this value is adopted in the following simulations. The nondimen-
sional wave period in Figure 5 is about 3)5, and so more than 300 time steps are used in this
case to simulate a cycle of the standing wave motion.

In order to validate the proposed scheme, time-dependent free-surface motions at the
tank centre for di!erent wave steepness parameters a/d are compared with the correspond-
ing "rst-order and "rst-plus-second-order analytical solutions. Figures 6}9 show the
growth in high-order nonlinear components with increasing wave steepness (for steepness
parameters a/d"0)005, 0)03, 0)05 and 0)1). A 41]21 grid is used, except for the steepest
waves where the grid is 61]21. The free surface oscillation in Figure 6 for a/d "0)005 is in
Figure 3. The p-transformed spectral mesh plotted in the physical domain.



Figure 4. Comparison of solutions using di!erent numbers of collocation points for a/d"0)05: *, 21]11;
} } }, 41]21; } ) } )}, 61]21.

Figure 5. Comparison of solutions using di!erent time steps: *, *t*"0)005; } } }, *t*"0)01;
} ) } ) }, *t*"0)02.
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complete agreement with the analytical solution. Nonlinearities gradually become stronger
as a/d increases from 0)03 to 0)1 (see Figures 7}9). Although the sum of the "rst- and second-
order solutions is very close to the nonlinear numerical solution in the initial few cycles, it
diverges from the analytical solution at later times, as can be seen in Figure 9 for a/d "0)1.



Figure 6. Time history of water elevation at the centre of the tank for a/d"0)005: *, numerical solution;
} } }, "rst-order solution; } )} ) }, "rst- and second-order solution.

Figure 7. Time history of water elevation at the centre of the tank for a/d "0)03: *, numerical solution;
} } }, "rst-order solution; } )} ) }, "rst- and second-order solution.
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Wu & Eatock Taylor (1994) observed a similar phenomenon for the same case, using
a "nite-element model. Owing to the absence of terms above second order, the analytical
solutions are incapable of modelling fully the behaviour of steep (and therefore highly
nonlinear) free-surface waves.



Figure 8. Time history of water elevation at the centre of the tank for a/d"0)05. *, numerical solution;
- - -, "rst-order solution; } )} ) }, "rst- and second-order solution.

Figure 9 Time history of water elevation at the centre of the tank for a/d "0)1"*, numerical solution;
} } }, "rst-order solution; } )} ) }, "rst- and second-order solution.

618 M. J. CHERN E¹ A¸.
Figure 10 superimposes the preceding results for water elevation histories from the
pseudospectral model. The pro"les reveal that nonlinearity not only changes the peak value
but also a!ects the wave phase.



Figure 10 Time history of water elevation at the centre of the tank for di!erent wave steepness conditions:*,
a/d"0)005; } } }, a/d"0)03; } ) } ) }, a/d"0)05; } ))} )) }, a/d"0)1.
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Figures 11}14 present the temporal water surface elevations at the centre and the left
wall, again for increasing wave steepness. At a/d"0)005, the peaks and troughs of the
standing waves are identically opposite to each other with respect to the centre and
left-hand end of the tank. As the nonlinearity becomes large, the standing-wave pattern
clearly becomes more complicated. There are slight phase di!erences between the tank
centre and wall. Moreover, the amplitudes of troughs and peaks at the two positions are no
longer identical.

Figure 15 shows spatial wave pro"les at nondimensional times t"26, 27, 28, 29 and 30
for a/d from 0)005 to 0)1. Two nodes are found, as would be expected, for the almost linear
waves at a/d"0)005 in Figure 15(a). At larger wave amplitudes, the two nodes become
less distinct and for a/d '0)05 could be said to have disappeared e!ectively. Even so, it
should be noted that these steep wave shapes are still very symmetrical even after 3000 time
steps.

Further results are now presented for double-standing waves in the rectangular tank. The
initial wave pro"le is thus given by

g(x,t"0)"acos(4nx/b) . (44)

Four initial wave amplitudes are considered in order to investigate the e!ect of nonlinearity.
Figure 16 shows the free-surface elevation time history of moderately steep waves with
a/d "0)03, using two grids of 21]11 and 41]21 nodes. The close agreement between the
two pro"les con"rms grid independence; hence, 41]21 grids are used for the four cases
considered here. A nondimensional time step, *t* "0)01, is also adopted. For the case
shown in Figure 16, there are more than 200 time steps per wave cycle. Figure 17 illustrates
water-elevation time histories for a/d"0)005, 0)015, 0)025 and 0)03; again, increasing
nonlinearity changes the peak and phase of the standing waves. Figure 18 contains spatial



Figure 11. Time history of water elevation at the centre and the wall of the tank for a/d"0)005:*, elevation at
the centre; - - -, elevation at the wall.

Figure 12. Time history of water elevation at the centre and the wall of the tank for a/d"0)03:*, elevation at
the centre; - - -, elevation at the wall.
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wave pro"les at di!erent times throughout the standing wave cycle; in this case, the
nondimensional times are t"26, 27, 28, 29 and 30. Again, it is evident that the wave nodes
smear with increasing wave nonlinearity.



Figure 13. Time history of water elevation at the centre and the wall of the tank for a/d"0)05:*, elevation at
the centre; - - -, elevation at the wall.

Figure 14. Time history of water elevation at the centre and the wall of the tank for a/d"0)1:*, elevation at the
centre; - - -, elevation at the wall.
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For increasing wavenumbers (i.e., progressively shorter initial wavelengths within the
tank), it is reasonable to expect that progressively "ner grids and smaller time steps would
be required. Even so, it is the authors' experience that the grid parameters are more sensitive
to wave steepness than wavenumber for the cases considered above.
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Figure 16. Time history of water elevation at the centre of the tank using di!erent meshes (a/d"0)03): *,
21]11; - - -, 41]21.

Figure 17. Time history of water elevation at the centre of the tank for di!erent wave steepness conditions:
*, a/d"0)005; - - -, a/d"0)015; - . - . -, a/d"0)025; - . . -, a/d"0)03.
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5.2. SLOSHING WAVE MOTION IN A BASE-EXCITED RECTANGULAR TANK

Dynamic free-surface motions of liquids in tanks are often driven by external forces.
Examples include earthquake-excited vibrations or inertia forces due to acceleration of
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a vessel. In the case of a ship, sloshing of liquids within ballast tanks may cause the ship to
experience a rolling moment, and even become unstable and capsize. Hence, it is important
to predict the e!ect on ship stability of transient free-surface e!ects of liquids held in its
interior tanks as part of the ship's design procedure. If the forcing frequency is near the
natural sloshing frequency, then resonance will occur, resulting in high pressures which may
damage the tank walls. Analytical and numerical techniques for predicting sloshing wave
motions have been developed over many years. For example, Abramson (1966) used linear
theory to analyse small-amplitude sloshing wave motions. Faltinsen (1978), Chen et al.
(1996) and Wu et al. (1998), respectively, used boundary-integral, general coordinate "nite
di!erence, and "nite-element methods in solving the potential #ow problem with nonlinear
free-surface boundary conditions. In the foregoing numerical schemes, it was necessary
either to introduce arti"cial damping or to smooth the free surface to prevent numerical
instabilities occurring. The availability of alternative theoretical solutions [e.g., Wu et al.
(1998)] make the case of sloshing free-surface motions in a rectangular tank a suitable
validation problem for the present scheme.

Consider a 2-D tank containing liquid, subject to a periodic horizontal base displacement
X

5!/,
(t)"a sin(xt), where a is an amplitude, t is time and x is the angular frequency of the

forced motion. The coordinate system is "xed at the centre of the still water free surface, and
moves with the tank. The mathematical model for the relative velocity potential will then be
the same as equations (20)}(24) except for the dynamical free-surface boundary condition
which is written as

L/
Lt

"

L/
Ly

Lg
Lt

!

1

2
($/ )$/)!g g!x

d2X
5!/,

dt2
, (45)

where x and y are measured horizontally and vertically from the centre of the tank, and
move with the tank. Wu et al. (1998) derive the linear solution for the relative velocity
potential to be

/"a
=
+
n/0
ACn

cosut!ACn
#

H
n

u2Bcosu
n
tB

coshk
n
(y#d)

coshk
n
d

sin k
n
x , (46)

where k
n
"[(2n#1)/b]n,u

n
"(gk

n
tanh k

n
d)1@2, H

n
"u3(4/b) [(!1)n/k2

n
] and C

n
"

H
n
/(u2

n
!u2).

Furthermore, the free-surface elevation can be obtained from

g"g
1
#g

2
, (47a)

where

g
1
"

a

gAxu2#
=
+
n/0

C
n
u sin k

n
xB sin ut (47b)

and

g
2
"!

a

g

=
+
n/0

u
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#
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n
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n
x sinu
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t . (47c)

Initial conditions for the velocity potential and free-surface elevation are

/(x,y,0)"!x
dX

5!/,
dt K

t/0

(48)

and
g(x, 0)"0. (49)
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Wu et al. (1998) have explained the physical behaviour of the time-dependent free-surface
elevation by considering equation (47a) which contains two terms, each referring to a wave
train. The "rst component, g

1
, corresponds to the excitation frequency u; the second

component, g
2
, corresponds to the natural frequencies u

/
, and is dominated by u

0
. Higher-

order components in g
2

correspond to the higher natural frequencies, and rapidly decay
with increasing n. Hence, g is primarily given by the linear sum of waves with frequencies
x and x

0
.

The tank is taken to have an aspect ratio of d/b"1
2

where b is its length and d is the
still water depth. The "rst case considered here has nondimensional forcing frequency u/u

0
"0)999 and nondimensional base-displacement amplitude a/d"0)001. Figure 19 shows
the numerical results and linear analytical solutions for the time-dependent free-surface
elevation at the left-hand tank wall, where x/d"!1. The amplitude of the free-surface
oscillation grows monotonically with time because x is within 0)1% of the natural fre-
quency x

0
and so near-resonant conditions apply. The analytical and numerical results are

almost identical, except at the peaks and troughs where the numerical model makes
increasingly higher predictions due to the growth of nonlinearity with amplitude of the
sloshing waves. For the second case, we used u/u

0
"1)10 and a/d"0)001. The forcing

frequency is now 10% larger than the natural frequency, and a much more complicated
surface-elevation time history is obtained at the left-hand wall, as can be seen in Figure 20.
Again there is remarkable agreement between the numerical and linear analytical solutions.
The linear analysis of Wu et al. (1988) predicts the frequency of the wave envelope to be
equal to 2p/(x!x

0
) "52)25, which is almost exactly the same as that produced by the

numerical model.
Figure 21 shows the spatial water surface pro"les along the tank at di!erent times

throughout a sloshing wave cycle for the case u/u
0
"0)999. From the overall agreement

with the linearized analytical model, it may be judged that the present scheme is suitable for
Figure 19. Time history at x/d"!1, u/u
0
"0)999: *, numerical result; - - -, linear solution.



Figure 20. Time history at x/d"!1, u/u
0
"1)1: *, numerical result; - - -, linear solution.

Figure 21. Wave pro"les for the case u/u
0
"0)999 from t"32 to 40.
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predicting base-induced sloshing in tanks, provided the free-surface pro"le does not over-
turn.

6. CONCLUSIONS

The 2-D nonlinear time domain free-surface #ow problem has been solved by the pseudos-
pectral method. The p-transformation eliminates any need for free-surface smoothing,
unlike other approaches which do not use a mapped grid. Simulations have been obtained
for standing waves in a "xed rectangular tank and for sloshing free-surface motions in
a base-excited tank. From the standing-wave test cases, it is evident that the numerical
method is very stable and requires fewer points in the discretization than other equivalent
models [e.g., Wu & Eatock Taylor (1994)]. Grid-independent numerical results can be
readily obtained. For transient free-surface waves of low steepness, almost exact agreement
is obtained with analytical potential #ow solutions up to second order. Nonlinear wave
components above second order become increasingly evident in the solutions presented for
wave steepnesses greater than a/d "0)03. The results for base-excited sloshing waves are
very similar to linear analytical solutions derived by Wu et al. (1998); the larger wave
motions are enhanced in the present numerical predictions due to nonlinear e!ects which
are not included in the analytical model. Overall, it may be concluded that the present
pseudospectral p-transformed potential #ow numerical scheme is useful for predicting
nonoverturning free-surface wave motions. It should be straightforward to extend the
present concepts to 3-D wave motions.
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APPENDIX: NOMENCLATURE

a initial wave elevation amplitude
b tank width
C

j
, C

k
coe$cients of formula used to evaluate Chebyshev parameters, u;

d still water depth
G) (q) matrix to evaluate the qth derivative of a function
G< X(q) matrix to evaluate the qth derivative with respect to x
G< Y(q) matrix to evaluate the qth derivative with respect to y
g acceleration due to gravity
h local water depth, a function of distance, x, and time, t
N number of collocation points
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T matrix formed by Chebyshev polynomials
t time
u a one-dimensional function
uL coe$cient of Cheybshev expansion of u
x horizontal coordinate in the physical domain
X horizontal coordinate in the computational domain
y vertical coordinate in the physical domain
> vertical coordinate in the computational domain
g free-surface elevation above still water level
p sigma transformation variable which replaces y
/ velocity potential function, /(x,y,t)
U velocity potential function, U(x,p,t)
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